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The theory for the angular dependence of the ultrasonic wave velocity in a

symmetry plane of an orthorhombic, stressed material is presented. The two waves

having polarizations in this plane are shown to have velocities which can be esti-

mated from measurements of the SHo and So guided modes of a thin plate: the
relationship being exact for the SHo mode and requiring a 10% correction for the

SO mode at long wavelength. It is then shown how stress and texture can be inde-

pendently inferred from various features of the angular dependence of these two

velocities. From the SHO data, the ability to determine the directions and differ-

ences in magnitudes of principal stresses is described and supported by experimental
data on several materials. From a combination of the SHo and SO data, a procedure is

proposed for determining the coefficients W400, Ww20, and W4w 0 of an expansion of the
crystallite orientation distribution function in terms of generalized Legendre

functions. Posslble applications in process control are indicated.

INTRODUCTION

Successful process control requires the nondestructive characterization of a

number of structural properties. Included are hardness, grain size, ductility,

strength, preferred orientation, and stress. This paper discusses techniques whereby

significant information related to the latter two quantities in rolled plate can be

inferred from the angular dependence of the velocity of ultrasonlc waves propagating

in the plane of the plate.

THEORY OF THE ANGULAR DEPENDENCE OF ULTRASONIC VELOCITY

Consider a rolled plate and a coordinate system in which the I, 2, and 3 axes
coincide, respectively, with the rolling direction, the transverse direction, and the

thickness direction, as shown in figure I. Assume that the material can be repre-

sented as an elastic continuum with orthorhombic symmetry, and imagine that a biaxial

stress is present in the plane of the plate with principal values Oa and Ob and

orientation angle _ as shown in figure 2. The velocity of ultrasonic _aves propa-
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Fig. 2. Orientation of stress and wave propagation direction.

gating in the plane of the plate, i.e. guided modes of the plate, must be obtained by

solving the nonlinear, anisotropic equations of dynamic elasticity subject to the

stress free boundary conditions on the two surfaces of the plate. The formidable job

can be simplified by first neglecting the plate surfaces and treating plane wave

propagation in an unbounded medium. Using an analysis, the solutions for the longi-
tudinal and transverse modes, to second order in the elastic anisotropy, are found to
be of the form

_ _ 62 CT2

2= C--L +T +a {PVL _L cos28- _T (1-cos 48) [(1-cos 48) 2
4 (CL-C T)

_ 2 2

- 2(i-COS 48)] + [1-COS 48]

32 (CL-C T) (I)

+ [(1-cos 4e) (cos 2e)] + (c16 + c26) sin 2e

4 (CL-C T)

1
(_16 - C26) sin 4e
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_
PVT2 " _T + T + _T (l-cos 4e) + [(l-cos 4e) 2 - 2 (1-cos 48)]

4 (CL-CT)

_2 _L 2 _8 CLCT
[1-cos4e] (l-cos4e) (cos 2e) (2)

32 (CL-CT) 4 (_L-_T)

- _ (_16 - 726) sin 4e

Here p is density, VL, T is the wave velocity of longitudinal and
_ran_vers_ waveR, e i_ the ankle o_ propa_gation with respect to the 1-dlrectlon,

CT- C66 , CL - (Cll + C22)/2 , _- (Cll - C22)/C _ _ = [(C L - _12)/2 - _T]/_T. The
latter two parameters are measures of longitud_al and shear wave velocity

anisotropies, respectively. In addition,

T = (%+ %)/2+ [(%- %)/2]cos2 (_- e) (3)

where Oa and ab are the principal stresses with the former acting along an axis
inclined at an angle _ with respect to the l-direction. In the absence of stress,

the Cij are equal to the anisotropic elastic stiffnesses of the orthorhombic con-
tinuum, for which _16 = C26 = O. Hence there are nine independent values (ref. I).
When stress is present, there will be small shifts in the values of these nine

constants (ref. 2). If _ # 0 the constant C 16 and C26 will no longer vanish due to
the lowering of the effective symmetry of the problem from orthorhombic to
triclinic.

The solution VL corresponds to a quasi-longitudinal wave which is polarized in

the I-2 plane, while the solution VT corresponds to a quasi-transverse wave polar-

ized in the same plane. A third solution, polarized along the 3-direction, also
exists which will not be discussed here.

The relationship of these plane wave solutions for an unbounded medium will next

be related to wave propagation in a plate. Consider first the shear wave solution

given by equation (2). Examination of the full solution shows that all stress com-

ponents vanish on planes Z = constant. Hence the plane wave results are also exact

solutions in the plate geometry. Since they are uninfluenced by the position of the

plate faces, they are non-dlspersive. This solution is known as the SHo mode of
the plate (ref. 3).

The plane waves whose velocities are given by equation (I) are not exact

solutions in the plate geometry since the dynamic stress component _33 does not
vanish for these solutions. However, a simple approximation exists when the

frequency is sufficiently low that the wavelength is large with respect to the plate

thickness. In isotroplc, linear elasticity, the fundamental, symmetric Lamb mode

ref.3),So,isk_owntopropagatewitha velocityofVs = VL [i-(_r_@21112inthe
o o

low frequency limit. Here VL is the plane wave longitudinal velocity and _ is
o

Poisson's ratio. For a Poisson's ratio of 0.3, VSo/VLo = 0.90.

In an orthorhombic material, this relationship generalizes to

VSo = VLo(l-Ci32/CiiC33 ) 112 (4)
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for propagation along the "i" symmetry axis. Thus the correction relating the plate

to plane wave velocities will depend on direction. The correction is the order of
10% as noted above, and it depends on elastic constants which only vary by a few

percent in modestly textured materials. Hence, in many cases, the angular dependence
of the correction may be negligible and its isotropic value can be used. This point

will be discussed further in the second section following.

As an experimental test of equation (2), consider the plot of AV/V versus for 8

for 6061AI in figure 3 (ref. 4). In the upper plot, Ga = _b = 0 and the data are

fitted well by the first and third term on the right hand side of equation (2). When

_a # 0 and _ = O, the results shown in the lower plot were obtained. Here the theory
includes the first three terms. C--T was shifted slightly to fit the zero degree data,

aa was determined from load cell readings, and _ was held equal to the unstressed
value. Although some minor differences between theory and experiment are observed,

the agreement is believed to be quite good. This is consistent with the theoretical

expectation that the remaining omitted terms vary as a higher order in the aniso-
tropy.
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Fig. 3. Comparison of predicted and applied stress in 6061-T6 aluminum when

stress is not parallel to material symmetry axes. Experimental configuration is
shown in the inset and the method of comparison is described in the text.
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DETERMINATION OF STRESS

Stress may be determined from measurements of the shear wave velocity as pre-

dicted by equation (2). As the results are discussed in detail elsewhere (refs.

4-8), only a brief summary will be given. Consider first the expression for T in

equation (3). Note that no material constants influence the dependence of T on Ua
and _b" Thus, if the contributions of the terms following T in equation (2) could be

suppressed, the difference in principle stresses, Ua-_' could be determined from
measurements of the angular dependence of VT. This can be accomplished by noting

that all but one of those terms has four-fold symmetry. Thus, if one measures VT(8 )
and VT(8 + 90 °) and takes the difference in pV2, it follows that

[vz(o- Vt(e+ 90°)]/VT = ) [(%-ab)cos2
(5)

8 CL CT
- (cos 28-cos 68)].

wher_e VT _ [V(8) + VT(8 + 90°)]/2. For small anlsotropies, one can approximate p_T 2
by CT for further simplification.

The final term in equation (5) is second order in the elastic anisotropy. In

cases in which it is negligible, the principal stress difference may be deduced by
varying 8 until the magnitude of the left hand side of equation (5) is maximized and

setting that value equal to (Ua-%)/2 CT. As an example, figure 4 presents a com-

parison of measured and predicted stress in a second 6061-T6 aluminum plate having an
unstressed SHO wave velocity anisotropy of 0.5%, as distinct from the 0.15% anlso-

tropy of the first sample shown in figure 3. The stress was applied at 45 ° with

respect to the rolling direction, _ = 45 °. The maximum value of velocity shift

between the 8 and 8+90° directions was observed to occur when 8 = 45 @, and a plot of

predicted stress versus applied stress (not shown) closely followed the ideal, unity
slope llne (ref. 8). However, that was not a critical test of the smallness of the

final term in equation (5) since cos 28 = cos 68 = 0 for 8 = 45°. Hence the measure-

ment direction was then changed to 8 = 15@ so that the final term would no longer

vanish identically. In the plot shown in figure 4, the predicted stress was deduced

on the basis of inserting the known values of _ = 45 =, 8 = 15 ° into equation (5) and

neglecting the final term. The excellent agreement is consistent with the postulated

small value of this second order anlsotropy term, at least in the particular aluminum
sample studied.

If the anlsotropy term is not small, a procedure is still available for removing
its influence on the data. Note that equation (5) contains only one term with a 68-

angular variation, which has as its coefficient the second order material anlsotropy
parameters. Determination of that coefficient from the value of the 68 term in a

Fourier series representation of [VT(e ) - VT(8 + 90°)] should allow the entire aniso-
tropy term to be subtracted from the data. The previously described procedure could
then be applied to the corrected data.

Other than the example illustrated in figure 4, a detailed experimental study of

this proposed procedure for non-parallel principal stress and material symmetry axes
has not yet been completed. However, when _ = O, a number of samples have been

studied (refs. 4, 6-8). Figure 5 presents, as an example, the results in a 304
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Fig. 4. Comparison of predicted and applied stress tn 6061-T6 aluminum when

stress is not parallel to material symmetry axes. Experimental configuration is

shown in the inset and the method of comparison is described in the text
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stainless steel sample having an unstressed SHo velocity anisotropy of 1.5%.
Agreement of predicted and applied stress is excellent. Similar results have been

obtained on 6061 aluminum, commercially pure copper, and ii00 aluminum plate. In the

latter case, tensile plastic deformation of 0.6% did not destroy the agreement. In

an additional sample of titanium (ref. 8), errors occurred due to the absence of the

assumed orthorhomblc symmetry in the unstressed state.

DETERMINATION OF TEXTURE

In the measurement of stress, the effects of texture were suppressed by com-

paring the SHo velocities measured before and after rotating the propagation

direction by 90 °. However, those suppressed terms may be used to directly determine

important parameters of the preferred orientation. The possibility of inferring
preferred orientation from measurements of the anlsotroples of the elastic constants

or sound velocities has been demonstrated by several authors (refs. 9-11). The

present disc_sslon differs from the prior work in two regards. First, the non-

destructive measurement of the velocity anisotropy can be made with couplant free

EMAT transducers (ref. 12). Hence operation in an on-llne, process control mode at

room or elevated temperatures is possible (ref. 13). Second, using relationships

recently reported by Sayers and Allen (ref. 2) the velocity anlsotropies can be
directly related to coefficients of the expansion of the crystallite orientation

distribution function (CODF) in terms of generalized Legendre functions (refs. 13,
14).

For a material with unknown stress orientations, the procedure would be as

follows. First the techniques described in the above section should be employed to

determine the principal stress directions and differences. This allows the angular
variation of the term T to be removed from equations (i) and (2). If one restricts

attention to the velocities measured at 0°, 45°,'and 90 °, one finds

CT + (%+%)/2 = PVT2(O° ) - [(0a-%)/2 ] cos 2_ (6a)

_ _ _ _2 CL2

C + (Oa+Ob)/2 + 8 C _ = PVT2(45°) - [(qa-_b)/2] sin2_ (6b)

T T 16 _L- CT)

_T + (°a+Ob)/2 = PVT2(90°) + [(%-%)/2] cos 2_ (6c)

_L + (%+%)/2 +2_L = PVL2 (O°) - [(%-%)/2] cos 2_ (6d)

C + (o" +o" )/2 - _ + --" + C"16 + C26 PVL
L a b 16 (_L - _T) (6e)

- [(_a-ab)/2] sin 2_
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In each of these equations, the experimentally observable velocities, and the

inferred principal stress orientations and differences are placed on the right-hand
side and can be considered as known quantities.

After noting that equations (6a) and (6c) are not independent because of the

relationship between [VT2(O°)-VT2(90°)] and [_-_], one concludes that there are
five equations in the six unknowns, C--T,C--L,(Ga+_b) , and (C16 + C26)" Hence, a

rigorous_ solution is not possible, and some further approximations will be required.

Since C16 and _26 appear only in equation (6e) and are not of primary interest, this
equation will be dropped leaving four equations in five unknowns. By elementary

manipulations it can be concluded that

CL + (aa+_)/2 = P[VL2(0°) + VL2(90°)]/2 (7a)

C--L = P[VL2(0° ) - VL2(90°)] - (_a-Ob) cos 2_ (Tb)

C--T + (_a+Gb)/2 = P[VT2(O° ) + VT2(90°)]/2 (7c)

F = p [VT2(45" ) - VT2(O°) ] + [_a-_b)/2] [cos 2a - sin 2fl] (7d)

T 16 (C--L - _T )

The stress terms on the left-hand side of equations (7a) and (7c) will generally

be small with respect to CL and CT and can be neglected. However, those on the
rlght-hand side must be retained as they appear in conjunction with the difference of
two numbers, which could be of comparable magnitude. It should also be noted that,

in general, % 8, CT, andCq are themselves weakly modified by stress through the

stress dependence of the Cij. In general, these are small effects and will be
neglected hereafter. In many applications, determination of texture would be done in
the unstressed state and the above considerations are unnecessary. Finally, the term

proportional to _2 in equation (7d) can be dropped for modest textures. The result

is the simplified system

CL _ 0 [VL2(0°) + VL2(90°)]/2 (Sa)

Cr _ 0 [VT2(O°) + VT2(90°)]/2 (8b)

_CL _ p [VL2(O° ) -VL2(900)] - (aa-_b) cos 2_ (8c)

_T _ 0 [VT2(45°)-VT2(O°)]+[(_a-_b)/2] [cos 2_-sln 2_], (Sd)

which can readily be solved for CL, CT, % and 8.

The coefficients of the CODF expansion are finally obtained from the relation

ship between _, 8, CL, and CT and the coefficients W_m n as defined by the CODF
expansion (refs. 2, 14)

-in_

W(_,_,_) = E E E W_mnZ(_)e -Im_ e
(9)

£=o m=-£ n=-£
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where W is the CODF expressed in terms of the Euler angles _, _, _ and Z_mn are
generalized Legendre functions. Sayers and Allen have derived the relationship

between the ultrasonic velocities and the W_m n using the method of Voigt to compute
polycrystalline averages (ref. 2). Following Bunge (ref. 15), they conclude that
only three independent coefficients enter in the calculation of elastic constants for

cubic crystallites, W400, W420, and W440. One additional coefficient, W000, is
determined by normalization. In texture analysis, the preferred direction in

equation (9) is generally taken to be the rolling direction, which leads to a dif-

ferent axis identification than that shown in figure 1 and used throughout the rest
of this paper. After rotation to such a system, as employed by Sayers and Allen

(ref. 2), in which the I, 2, and 3 axes correspond respectively to the normal, trans-
verse, and rolling directions, one concludes

P[VL 2(0°) + VL2(90o)]/2 = CIIo _ 2Co [i_ _ _/- _2 W400

4 - w44° (10a)- 3_ // _2 W420

P[VL2(0 °) -VL2(90°)] - (aa-Ob) cos 2_
(lOc)

_ 2= 4co w.00_ w.20 W440]

P[VT2(45 °) - VT2(0°)] + [(aa-Ob)/2 ] [cos 2_- sin 2_] = C°[_/- _2 W400 (lOd)
+ _ _ _2 W420 + _ _ ,n.2W440]

0 0 0 0 0 0

where ell , C44 , and C12 are single crystal elastic constants and C = CII - C12
- 2 C44 _. The W4m o are defined in a coordinate system with the 3-axis along the
rolling direction, in contrast to the elastic constants appearing in previous
equations in this paper. However, the experimental observables on the left hand side

of equation (I0) are unambiguous.

This constitutes an overdetermined system, since there are four equations in the

three unknowns, W4m o. Either experimental error or inaccuracies in the Voigt
averaging scheme would render an exact solution of all equations impossible. A

detailed analysis of the most stable data reduction scheme has not yet been con-

ducted. However, it can be speculated that equations (10c) and (10d) should be

weighed heavily since the experimental quantities are relative velocities, rather

than the absolute velocities appearing in equations (lOa) and (lOb). It is also

likely that equation (10b) will prove more accurate than equation (10a) because no

correction of plate to plane wave velocities is required. Whereas such a correction

may be quite satisfactory for relative measurements, it may be inadequate for abso-

lute measurements. Thus a first attempt at reduction to practice might involve dis-

regarding equation (IOa) and solving the three remaining systems simultaneously.

As a check, one should use the computed W Qmn values to test the accuracy of the

isotropic approximation to the correction relat-fng the velocities VL and VS as

given by equation (4). For larger textures, an iterative solution i_ght be _equired

in which first estimates of the W's are used to recalculate the velocities VLo(0° )

and VLo(90° ) using equation (4) and the polycrystalline averaged elastic constant
expressions (ref. 2)
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o 16 /_- 72 (W - /5-7_ ] (lla)ci3 = c12 + C° IT-3 40o w_20)

o 4 - _ ] (llb)C23= Ci2 + c° [_+_-_ _f _2 (w40° W440)

Again, a mixed notation has been used in this equation. The elastic constants

appearing on the left hand side of equation (Ii) are defined in the coordinated

system of figure I. The W4m o are defined after Sayers and Allen (ref. 2) as dis-
cussed above. As expected, the deviations from the isotropic assumptions will become

greater when either the single crystal anisotropy, C°, or the degree of preferred

orientation, as indicated by the W4mo, are large.

The above describes one approach to deduce the coefficients of the CODF from the

angular dependence of the SHo and So plate mode velocities. Smith et al. (ref. 16)
have discussed a closely related approach in which the velocities of higher order,

horizontally polarized plate modes, SHn, are measured and used to predict the aniso-
tropic elastic constants. The experimental parameters of that approach could be

related to the W_m n using arguments similar to the one presented above.

CONCLUDING REMARKS

It has been shown that measurements of the angular dependence of the SHo and So

ultrasonic modes of a plate are influenced by both stress and texture. Data

reduction schemes are presented for making independent estimates of a) the orien-
tations and difference of in-plane principal stresses and b) the coefficients W400,

W420, and W440 of the CODF expansion. Since the data can be obtained with couplant
free, EMAT probes, there appears to be a high potential for in-line process control

applications (ref. 17). Figure 6 sketches the required measurements. Since-the use

2(TD)

1
I

VL

----_1 ( RD )

Fig. 6. Measurements required for nondestructive determination of stress and
texture parameters. The solid lines schematically indicate the angular

dependence of the velocities and the dots indicate the points at which data is

required.
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of the CODF as a means of correlating texture with mechanical properties has shown

considerable recent promise (ref. 18), such a technique might be of considerable
value in process control.
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